Prewavelet Solution to Poisson Equations

نویسندگان

  • Ming-Jun Lai
  • Haipeng Liu
چکیده

Finite element method is one of powerful numerical methods to solve PDE. Usually, if a finite element solution to a Poisson equation based on a triangulation of the underlying domain is not accurate enough, one will discard the solution and then refine the triangulation uniformly and compute a new finite element solution over the refined triangulation. It is wasteful to discard the original finite element solution. We propose a prewavelet method to save the original solution by adding a prewavelet subsolution to obtain the refined level finite element solution. To increase the accuracy of numerical solution to Poisson equations, we can keep adding prewavelet subsolutions. Our prewavelets are orthogonal in the H1 norm and they are compactly supported except for one globally supported basis function in a rectangular domain. We have implemented these prewavelet basis functions in MATLAB and used them for numerical solution of Poisson equation with Dirichlet boundary conditions. Numerical simulation demonstrates that our prewavelet solution is much more efficient than the standard finite element method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

Numerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function

The multidimensional exponential Levy equations are used to describe many stochastic phenomena such as market fluctuations. Unfortunately in practice an exact solution does not exist for these equations. This motivates us to propose a numerical solution for n-dimensional exponential Levy equations by block pulse functions. We compute the jump integral of each block pulse function and present a ...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

The Vlasov-Poisson Equations as the Semiclassical Limit of the Schrödinger-Poisson Equations: A Numerical Study

In this paper, we numerically study the semiclassical limit of the SchrödingerPoisson equations as a selection principle for the weak solution of the VlasovPoisson in one space dimension. Our numerical results show that this limit gives the weak solution that agrees with the zero diffusion limit of the Fokker-Planck equation. We also numerically justify the multivalued solution given by a momen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008